skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grauman, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. People use videos to learn new recipes, exercises, and crafts. Such videos remain difficult for blind and low vision (BLV) people to follow as they rely on visual comparison. Our observations of visual rehabilitation therapists (VRTs) guiding BLV people to follow how-to videos revealed that VRTs provide both proactive and responsive support including detailed descriptions, non-visual workarounds, and progress feedback. We propose Vid2Coach, a system that transforms how-to videos into wearable camera-based assistants that provide accessible instructions and mixed-initiative feedback. From the video, Vid2Coach generates accessible instructions by augmenting narrated instructions with demonstration details and completion criteria for each step. It then uses retrieval-augmented-generation to extract relevant non-visual workarounds from BLV-specific resources. Vid2Coach then monitors user progress with a camera embedded in commercial smart glasses to provide context-aware instructions, proactive feedback, and answers to user questions. BLV participants (N=8) using Vid2Coach completed cooking tasks with 58.5\% fewer errors than when using their typical workflow and wanted to use Vid2Coach in their daily lives. Vid2Coach demonstrates an opportunity for AI visual assistance that strengthens rather than replaces non-visual expertise. 
    more » « less
    Free, publicly-accessible full text available July 25, 2026
  2. Egocentric and exocentric perspectives of human action differ significantly, yet overcoming this extreme viewpoint gap is critical in augmented reality and robotics. We propose VIEWPOINTROSETTA, an approach that unlocks large-scale unpaired ego and exo video data to learn clip-level viewpoint-invariant video representations. Our framework introduces (1) a diffusion-based Rosetta Stone Translator (RST), which, leveraging a moderate amount of synchronized multi-view videos, serves as a translator in feature space to decipher the alignment between unpaired ego and exo data, and (2) a dual encoder that aligns unpaired data representations through contrastive learning with RST-based synthetic feature augmentation and soft alignment. To evaluate the learned features in a standardized setting, we construct a new cross-view benchmark using Ego-Exo4D, covering cross-view retrieval, action recognition, and skill assessment tasks. Our framework demonstrates superior cross-view understanding compared to previous view-invariant learning and ego video representation learning approaches, and opens the door to bringing vast amounts of traditional third-person video to bear on the more nascent first-person setting. 
    more » « less
    Free, publicly-accessible full text available June 14, 2026
  3. Anticipating how a person will interact with objects in an environment is essential for activity understanding, but existing methods are limited to the 2D space of video frames-capturing physically ungrounded predictions of "what" and ignoring the "where" and "how". We introduce FIction for 4D future interaction prediction from videos. Given an input video of a human activity, the goal is to predict which objects at what 3D locations the person will interact with in the next time period (e.g., cabinet, fridge), and how they will execute that interaction (e.g., poses for bending, reaching, pulling). Our novel model FIction fuses the past video observation of the person's actions and their environment to predict both the "where" and "how" of future interactions. Through comprehensive experiments on a variety of activities and real-world environments in EgoExo4D, we show that our proposed approach outperforms prior autoregressive and (lifted) 2D video models substantially, with more than 30% relative gains. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  5. While image captioning provides isolated descriptions for individual images, and video captioning offers one single narrative for an entire video clip, our work explores an important middle ground: progress-aware video captioning at the frame level. This novel task aims to generate temporally fine-grained captions that not only accurately describe each frame but also capture the subtle progression of actions throughout a video sequence. Despite the strong capabilities of existing leading vision language models, they often struggle to discern the nuances of frame-wise differences. To address this, we propose ProgressCaptioner, a captioning model designed to capture the fine-grained temporal dynamics within an action sequence. Alongside, we develop the FrameCap dataset to support training and the FrameCapEval benchmark to assess caption quality. The results demonstrate that ProgressCaptioner significantly surpasses leading captioning models, producing precise captions that accurately capture action progression and set a new standard for temporal precision in video captioning. Finally, we showcase practical applications of our approach, specifically in aiding keyframe selection and advancing video understanding, highlighting its broad utility. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  6. Given a multi-view video, which viewpoint is most informative for a human observer? Existing methods rely on heuristics or expensive "best-view" supervision to answer this question, limiting their applicability. We propose a weakly supervised approach that leverages language accompanying an instructional multi-view video as a means to recover its most informative viewpoint(s). Our key hypothesis is that the more accurately an individual view can predict a view-agnostic text summary, the more informative it is. To put this into action, we propose LangView, a framework that uses the relative accuracy of view-dependent caption predictions as a proxy for best view pseudo-labels. Then, those pseudo-labels are used to train a view selector, together with an auxiliary camera pose predictor that enhances view-sensitivity. During inference, our model takes as input only a multi-view video--no language or camera poses--and returns the best viewpoint to watch at each timestep. On two challenging datasets comprised of diverse multi-camera setups and how-to activities, our model consistently outperforms state-of-the-art baselines, both with quantitative metrics and human evaluation. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  7. Object state changes in video reveal critical information about human and agent activity. However, existing methods are limited to temporal localization of when the object is in its initial state (e.g., the unchopped avocado) versus when it has completed a state change (e.g., the chopped avocado), which limits applicability for any task requiring detailed information about the progress of the actions and its spatial localization. We propose to deepen the problem by introducing the spatially-progressing object state change segmentation task. The goal is to segment at the pixel-level those regions of an object that are actionable and those that are transformed. We introduce the first model to address this task, designing a VLM-based pseudo-labeling approach, state-change dynamics constraints, and a novel WhereToChange benchmark built on in-the-wild Internet videos. Experiments on two datasets validate both the challenge of the new task as well as the promise of our model for localizing exactly where and how fast objects are changing in video. We further demonstrate useful implications for tracking activity progress to benefit robotic agents. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  8. Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  9. We investigate exocentric-to-egocentric cross-view translation, which aims to generate a first-person (egocentric) view of an actor based on a video recording that captures the actor from a third-person (exocentric) perspective. To this end, we propose a generative framework called Exo2Ego that decouples the translation process into two stages: high-level structure transformation, which explicitly encourages cross-view correspondence between exocentric and egocentric views, and a diffusion-based pixel-level hallucination, which incorporates a hand layout prior to enhance the fidelity of the generated egocentric view. To pave the way for future advancements in this field, we curate a comprehensive exo-to-ego cross-view translation benchmark. It consists of a diverse collection of synchronized ego-exo tabletop activity video pairs sourced from three public datasets: H2O, Aria Pilot, and Assembly101. The experimental results validate that Exo2Ego delivers photorealistic video results with clear hand manipulation details and outperforms several baselines in terms of both synthesis quality and generalization ability to new actions. 
    more » « less